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Overlaps of the biorthogonal uq(3) coupling coefficients and
related basic hypergeometric and otherq-factorial series

Sigitas Alǐsauskas†
Institute of Theoretical Physics and Astronomy, A Goštauto 12, Vilnius 2600, Lithuania

Received 3 March 1997

Abstract. The intermediate expansion technique is developed for the overlap coefficients of
different biorthogonal coupled states and coupling coefficients of the quantum algebra uq (3)
and group SU(3) with repeating irreducible representations and the role of separate basic and
classical hypergeometric functions is demonstrated. Some expansion coefficients such as new
prime overlap functions (equivalent to the bilinear combinations of thedifferent boundary
isofactors) are expressed in terms of the balanced (Saalschützian) basic5φ4 or classical5F4(1)
hypergeometric series. These new overlap functions, their analytical inversion, some known
triangular expansion matrices, transition matrices related to definite uq (2) Racah coefficients, the
well-poised10φ9 or 9F8(1) series and compositions ofq-factorial series resembling the well-
poised9φ8 and 11φ10 series or equivalent to8F7(−1) and 10F9(−1) series provide themselves
as generators for mutual expansion of different non-orthonormal systems of uq (3) and SU(3)
isofactors, which may be orthonormalized to the paracanonical or (with a definite caution)
canonical version.

1. Introduction

The relationships of the coupling (Clebsch–Gordan–Wigner) and recoupling (Racah)
coefficients of the quantum group uq(2) with the basic hypergeometric functions3φ2(q)

and 4φ3(q), respectively, are well known (see e.g. Grozaet al [1], Kachurik and Klimyk
[2], Rajeswari and Srinivasa Rao [3]), as well as the relations of the Clebsch–Gordan
and Racah coefficients of the group SU(2) with the classical hypergeometric functions
3F2(1) and 4F3(1). In recent years, the coupling coefficients of the quantum groups uq(n)
and, particularly, uq(3) were considered by several authors (Smirnovet al [4], Gould and
Biedenharn [5], Smirnov and Kharitonov [6, 7] and expressed as multiple sums (Ališauskas
and Smirnov [8], Alǐsauskas [9, 10]), some of which are separately related to the basic
hypergeometric series. In contrast with the multiplicity-free uq(n) cases [8] (including
the general uq(2) case), the orthogonalization and normalization problem of the coupling
coefficients and the coupled states of uq(3) is non-trivial, when the repeating irreducible
representations (irreps) appear in the coproduct decomposition, similarly as for the compact
Lie group SU(3). The analytical biorthogonal systems of the uq(3) isoscalar factors
(isofactors) emerge quite naturally [9]. However, the overlap coefficients (which form the
metric tensor for the dual bases or coupled states and may also be also correlated with the
K-matrix technique of the vector coherent state theory—cf Deenen and Quesne [11], Quesne
[12], Le Blanc and Rowe [13], Roweet al [14]) are necessary for the orthonormalization
(by means of the Gram–Schmidt procedure or using the square root of the overlap matrix
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as theK-matrix, respectively), unless the explicit orthogonalization coefficients (Ališauskas
[15, 16]) of the SU(3) isofactors, (with the partition dependent generalization of the balanced
hypergeometric functions4F3(1)—theAλ(

a,b,d,e

c
)-functions of Louck and Biedenharn [17]—

see Loucket al [18], Biedenharnet al [19] as the numerator–denominator polynomials) will
be generalized to the uq(3) isofactors. The expressions of the overlaps related to the bilinear
combinations of special recoupling coefficients [9] and derived by means of the projection
operators of the complementary quantum algebras (Quesne [20], Smirnov and Tolstoy [21]),
include the double sums, with separate sums related to rather complicated (well-poised) basic
hypergeometric series, but without any definite sense in the representation theory of uq(3).

Otherwise, the overlaps of the biorthogonal states for the two-parametric irreps of
SU(n) ⊃ SO(n) and Sp(4) ⊃ U(2) were expressed using the intermediate expansion
(in terms of the auxiliary states—see [22–25]) technique. By analogy with the SU(3)
case (Alǐsauskas [26]), the triangular expansion matrices of definite non-orthogonal
uq(3) isofactors (which correspond to the same version of the orthogonal—paracanonical
isofactors) are formed by overlaps of certain (dual) coupled states—the boundary (extreme)
values of definite non-orthogonal isofactors [9]. However, they are insufficient for expansion
of the non-orthogonal uq(3) isofactors in terms of the mutually dual ones. Another problem
is presented by the explicit orthonormalization of the SU(3) and uq(3) isofactors, constructed
by the method of Draayer and Akiyama [27], since conjecture [28] about the possibility of
the immediate construction of orthogonal SU(3) canonical tensor operators for non-extreme
values of the multiplicity labelt was not confirmed (see [10]).

We will consider some elementary expansion coefficients and overlaps of the different
non-orthogonal sets of uq(3) and SU(3) isofactors (which lead to the sets of the paracanonical
or canonical orthonormal uq(3) and SU(3) isofactors, respectively) and express them in terms
of basic (or classical) hypergeometric series or relatedq-factorial series. The role of the
different rearrangement and summation formulae ofq-factorial series is also demonstrated.
Section 2 is devoted to the main definitions and recursive construction of the biorthogonal
systems of isofactors, specified to the uq(3) case.

In section 3 we derive a new interesting expression in terms of the balanced
(Saalscḧutzian)5φ4(q) basic hypergeometric series (cf Gasper and Rahman [29]) for overlaps
of different non-orthogonal systems of uq(3) isofactors (but yielding the same version of
the paracanonical isofactors), which are equivalent to the bilinear combinations of extreme
(boundary) uq(3) isofactors of different types. This expression may be used as the last
important but indispensable link for overlaps of the definite (the same) non-orthogonal
system of uq(3) isofactors, i.e. for the bilinear combination of extreme uq(3) isofactors
of the same type in terms of the double sum, with the second sum equivalent to the
well-poised 10φ9(q) basic hypergeometric series or to the well-poised9F8(1) classical
hypergeometric series in the SU(3) case. Moreover, the new expansion matrix may be
inverted by means of the analytical inversion (Ališauskas [26, 30]) substitutions. Hence, an
interesting biorthogonality relation for the terminating balanced5φ4(q) basic hypergeometric
series is also derived.

In section 4, some overlaps—the expansion coefficients between the different families
of the biorthogonal systems of uq(3) isofactors (which lead to the different versions of
paracanonical or canonical isofactors)—are presented in terms of the uq(2) recoupling
(Racah orq 6j -) coefficients, including those which lead to the isofactors—reduced matrix
elements of the uq(3) canonical tensor operators. In particular, some uq(3) canonical
isoscalar factors with the minimal null space of the uq(3) canonical tensor operators are
derived, including normalized reduced matrix elements of extreme components of the self-
adjoint unit canonical tensor operators.
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Section 5 is devoted to the expansion coefficients of the (orthonormal) uq(3) canonical
isofactors with the maximal null space (as defined in [10]) and expansion of the general
(non-orthonormal) construction of isofactors (Ališauskas [10, 28]) which leads to the uq(3)
canonical tensor operators. The corresponding overlaps are expressed in terms of theq-
factorial series, resembling the well-poised9φ8 (which, in turn, have been rearranged from
the double sum, each separately of3φ2 type) and11φ10 basic hypergeometric series.

2. Defining relations and summary of some previous results

As in [8–10], we use the Cartan–Weyl generatorsEik(i, j, k = 1, 2, 3) of the unitary
quantum algebra uq(3) = Uq(u(3)), which satisfy the commutation relations

[Eii, Ekk] = 0 [Eii, Ejk] = δijEik − δikEji (2.1a)

[Eik, Eki ] = [Eii − Ekk]. (2.1b)

Here and below [x] and [x]! are, respectively, theq-numbers andq-factorials:

[x] = (qx − q−x)
(q − q−1)

[x]! = [x][x − 1] . . . [2][1] [1]! = [0]! = 1 (2.2a)

(α|q)n =
n−1∏
k=0

[α + k] = [α][α + 1] . . . [α + n− 1] = [α + n− 1]!

[α − 1]!
(2.2b)

which are symmetric under substitutionq ↔ q−1.
The composite generators may be expressed in terms of theq-deformed commutators

E13 = [E12, E23]q = E12E23− qE23E12 (2.3a)

E31 = [E32, E21]q−1 = E32E21− q−1E21E32 (2.3b)

and satisfy the Serre identities. GeneratorsE12 andE21 are chosen for the canonical uq(2)
subalgebra, used for labelling of the basis states in theU basis.

We use the coproduct expansion rules

1(Eii) = Eii ⊗ 1+ 1⊗ Eii (2.4a)

1(Eii+1) = Eii+1⊗ q1/2(Eii−Ei+1,i+1) + q−1/2(Eii−Ei+1,i+1) ⊗ Eii+1 (2.4b)

1(Ei+1i ) = Ei+1i ⊗ q1/2(Eii−Ei+1,i+1) + q−1/2(Eii−Ei+1,i+1) ⊗ Ei+1i (2.4c)

as well as special coproduct formulae (Smirnovet al [4]) for 1(E13) and1(E31).
We use here the same notations for irreps and basis states of uq(3) as were used in

[10, 26, 28] with(a b) for the mixed tensor irreps

a = m13−m23 b = m23−m33 where [m13, m23, m33] (2.5a)

is a Young frame (partition). The basis states are labelled by the hyperchargey, the isospin
i and its projectioniz:

y = m12+m22− 2
3(m13+m23+m33) i = 1

2(m12−m22)

iz = m11− 1
2(m12+m22) (2.5b)

wheremij are the Gelfand–Tsetlin parameters (see [5]). The parameter

z = 1
3(b − a)− 1

2y = m23− 1
2(m12+m22) (2.5c)

is sometimes more convenient thany, because

i ± z > 0 a + z − i > 0 b − z − i > 0 (2.5d)
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are integers. For the state of irrep(a b) in the coproduct(a′b′)⊗ (a′′b′′) decomposition,

z = z′ + z′′ + v wherev = 1
3(a
′ − b′ + a′′ − b′′ − a + b). (2.6)

The parameters of the highest weight state (HWS) accept the values

y0 = 1
3(a + 2b) i0 = 1

2a = −z0 (2.7a)

while for the lowest weight state (LWS)

y0 = − 1
3(2a + b) i0 = 1

2b = z0 (2.7b)

and for the maximal isospin state (MIS)

ym = 1
3(a − b) im = 1

2(a + b) zm = 1
2(b − a). (2.7c)

The multiplicity of irrep(a b) in the coproduct(a′b′)⊗ (a′′b′′) decomposition is equal
to

r = minrαβγ + 1 (α = 1, 2, 3;β = 1, 2, 3; γ = 1, 2) (2.8a)

whererαβγ form the following 3× 3× 2 array (with the third dimension represented by a
skew shift in plane):

|rαβγ | =

∣∣∣∣∣∣∣∣∣∣∣

r111 b − v b′

r112 b b′ + v
a r221 a′′ − v

a + v r222 a′′

a′ − v b′′ r331

a′ b′′ + v r332

∣∣∣∣∣∣∣∣∣∣∣
(2.8b)

r111= b′ − a′′ + a + v r112= a′ − b′′ + b − v r221= a − a′ + b′′ + v
r222= a′′ − b′ + b − v r331= b′ + b′′ − b + v r332= a′ + a′′ − a − v
with equidistant parameters in the layers, rows and columns:

rαβ2− rαβ1 = rα′β ′2− rα′β ′1 = v rαβγ − rαβ ′γ = rα′βγ − rα′β ′γ . (2.8c)

Now let us present some expressions for the biorthogonal isofactors of uq(3) derived
by means of the recoupling technique [9]†. Equations (3.1) and (3.2b) present the non-
orthogonal isofactors (which are equivalent to the bilinear combination of orthogonal
isofactors) in terms of the multiplicity-free isofactors of uq(3) [8]‡ and recoupling
coefficients of uq(2)[
(a′b′) (a′′b′′) −,+,J̃ (ab)
y ′i ′ y ′′i ′′ yi

](3)
q

≡
∑
ρ

[
(a′b′) (a′′b′′) ρ(ab)

(−i ′0)i ′0 (i
′′
0)i
′′
0 (z̃)J̃

](3)
q

[
(a′b′) (a′′b′′) ρ(ab)

(z′)i ′ (z′′)i ′′ (z)i

](3)
q

(2.9a)

= qQ1(a
′b′a′′b′′ab;J̃ z̃)

(
[a′′ + b′′ + 1]!

[a′′ + 1][2J̃ + 1]

† Note that the secondλ should be corrected into3 in the right-hand side of (3.2a) of [9], z0 = z′ + z′′ + v and
z̃′ = 1

2(a
′′ − a)− v in (4.7), Ĩ ′ should be replaced bỹI in (4.15), the lastλ in the denominator under the sum sign

on the right-hand side of (5.3) should be replaced byµ and secondSn,n[λ′;3] in the right-hand side of (5.56)
should be corrected intoSn,n[λ;3].
‡ Note that the lastµ in the denominator of the right-hand side of (3.14) of [8] should be changed toµ′; the
numerator square root factor [λ′k ]! is omitted on the right-hand side of (3.20), as well as the product of the
numerator square root factors [λ′1 − λ′j − 1+ j ]! (2 6 j 6 k) on the right-hand side of (3.21); factor [2i + 1] is

omitted in the numerator under the square root of (4.5) and in the denominator under the square root of (4.8).
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× [a + 1][b + 1][a + b + 2][b]![ b + 2J̃ + 1]!

[b′ + b′′ − b + v]![ b′ + b′′ + v + 1]![b′ + b′′ + a + v + 2]!

)1/2

×
∑

j2,j3,J,Z

[
(a′b′) (b′′, 0) (2J̃ , b)
(z′)i ′ (−j2)j2 (Z)J

](3)
q

[
(2J̃ , b) (a′′ + b′′, 0) (ab)

(Z)J (−j3)j3 (z)i

](3)
q

×
[
(b′′, 0) (a′′ + b′′, 0) (a′′b′′)
(−j2)j2 (−j3)j3 (z′′)i ′′

](3)
q

U2(i
′j2ij3; J i ′′)q (2.9b)

with two independent summation parameters in the right-hand side, where

j2+ j3 = b′′ − z′′ Z = z′ − j2+ b − b′ b = 1
2(a
′ + b′′)+ b′ − J̃

z̃ = 1
2(b
′′ − a′)+ v a + z̃− J̃ > 0 b − z̃− J̃ > 0

1
2(a
′ + b′′)− J̃ > 0 J̃ ± 1

2(a
′ − b′′) > 0 J̃ ± z̃ > 0

Q1(a
′b′a′′b′′ab; J̃ z̃) = 1

2{J̃ (J̃ + 1)+ z̃(3z̃+ 2a − 2b)− ab + 1
2(a
′ + b′′)

+a′′ + b′ − a − b}. (2.10)

The− and+ signs and their positions in the multiplicity label−,+, J̃ (presented on the
left-hand side of (2.9) as the subscript−,+, J̃ ) indicate the signs and positions of extreme
z′ andz′′ in (2.9a), whereρ is an arbitrary (orthogonal or biorthogonal) multiplicity label.

Expressions for the non-orthogonal isofactors of the dual type (which satisfy the definite
boundary conditions—see section 4 of [9]) may be presented as follows:[
(a′b′) (a′′b′′) ρ(ab)

y ′i ′ y ′′i ′′ yi

](3)
q

= Nρ [a′b′a′′b′′; ab]

×
∑

j2,j3,J,Z

[
(a′b′) (0b′′) (ãb̃)

(z′)i ′ (j2)j2 (Z)J

](3)
q

[
(ãb̃) (a′′0) (ab)

(Z)J (−j3)j3 (z)i

](3)
q

×
[
(0b′′) (a′′0) (a′′b′′)
(j2)j2 (−j3)j3 (z′′)i ′′

](3)
q

U2(i
′j2ij3; J i ′′)q (2.11)

wherej2− j3 = z′′. We take in (2.11) fora′ + 2b′ + a′′ − b′′ − a− 2b > 0 the intermediate
irreps

(ã, b̃) = (2J̃ , 1
2(a
′ − b′′)+ b′ − J̃ ) (2.12a)

(correlated with the multiplicity label (superscript)ρ = −,+, J̃ ) and renormalization factor

N−,+,J̃ [a′b′a′′b′′; ab] =
([

(a′b′) (0b′′) (ãb̃)

(−i ′0)i ′0 (i
′′
0)i
′′
0 (−J̃ )J̃

](3)
q

[
(ãb̃) (a′′0) (ab)

(−J̃ )J̃ (0)0 (z̃)J̃

](3)
q

)−1

(2.12b)

when fora′ + 2b′ + a′′ − b′′ − a − 2b 6 0 we may use the intermediate irreps

(ã, b̃) = (2Ĩ ′, 1
2(a − a′′)+ b − Ĩ ′) (2.13a)

the multiplicity label (superscript)ρ = Ĩ ′,−,− and renormalization factor

NĨ ′,−,−[a′b′a′′b′′; ab] =
([
(a′b′) (0b′′) (ãb̃)

(z̃′)Ĩ ′ (0)0 (−Ĩ ′)Ĩ ′
](3)
q

)−1

(2.13b)

wherez̃′ = 1
2(a
′′ − a)− v. Equation (2.11) with inserted (2.12a) and (2.12b) turns intoδi,J̃

for i ′ = −z′ = 1
2a
′, i ′′ = z′′ = 1

2b
′′, but expression (2.11) together with (2.12a) and (2.12b)

gives δi ′,Ĩ ′ for i ′′ = −z′′ = 1
2a
′′, i = −z = 1

2a. The multiplicity free isofactors on the
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right-hand side of (2.9b) and (2.11) include double, single and no sums, respectively, but
the corresponding isofactors on the right-hand side of (2.12b) and (2.13b) may be expressed
without any sum, using their symmetry properties [8, 10].

3. Elementary overlaps of biorthogonal coupled states and basic hypergeometric
series

We present the triangle direct and inverse overlap matrices (in accordance with comments
and q-phase (4.13) at the end of section 4 of [9] and equation (2.11) of [26]) as special
cases of (2.11), with inserted (2.12) or (2.13):

(ηĨ
′,−,−|η−,+,J̃ )q ≡

[
(a′b′) (a′′b′′) Ĩ ′,−,−(ab)
y ′0i
′
0 y ′′0i

′′
0 ỹJ̃

](3)
q

= (−1)Ĩ
′+z̃′qa

′′/2+b′′B(a′b′a′′b′′ab; Ĩ ′z̃′, J̃ z̃)([2Ĩ ′ + 1][a + 1])1/2

× [J̃ + Ĩ ′ + 1
2(b
′ − b + v)]!(b′ − b + v|q)(b−b′−v)/2−J̃+Ĩ ′

[ 1
2(b − b′ − v)− J̃ + Ĩ ′]![ 1

2(b − b′ − v)+ J̃ + Ĩ ′ + 1]!
(3.1a)

(ηJ̃ ′,−,−|η−,+,Ĩ )q ≡
[
(a′b′) (a′′b′′) −,+,Ĩ (ab)
ỹ ′J̃ ′ y ′′0 i

′′
0 y0i0

](3)
q

= (−1)a
′′−a+(a′−b′′)/2+Ĩ q−a

′′/2−b′′B−1(a′b′a′′b′′ab; J̃ ′z̃′, Ĩ z̃)([2J̃ ′ + 1])1/2

× [2Ĩ + 1][Ĩ + J̃ ′ + 1
2(b − b′ − v)]!(b − b′ − v|q)(b′−b+v)/2−J̃ ′+Ĩ

([a + 1])1/2[ 1
2(b
′ − b + v)+ Ĩ − J̃ ′]![ 1

2(b
′ − b + v)+ Ĩ + J̃ ′ + 1]!

(3.1b)

where

B(a′b′a′′b′′ab; Ĩ ′z̃′, J̃ z̃) = B−1(abb′′a′′a′b′; J̃ z̃, Ĩ ′z̃′) = qQ1(a
′b′a′′b′′ab;J̃ z̃)−Q1(abb

′′a′′a′b′;Ĩ ′ z̃′)

×∇[ 1
2b
′′, 1

2a
′, J̃ ]

∇[ 1
2a
′′, 1

2a, Ĩ
′]

H [abJ̃ z̃]

H [a′b′Ĩ ′z̃′]

(
[b′]![ a′ + b′ + 1]![a′′]![ Ĩ ′ − z̃′]![ J̃ + z̃]!
[b′′]![ b]![ a + b + 1]![ Ĩ ′ + z̃′]![ J̃ − z̃]!

)1/2

(3.2)

z̃′ = 1
2(a
′′ − a)− v, z̃ = 1

2(b
′′ − a′)+ v,

∇[abc] =
(

[a + b − c]![ a − b + c]![ a + b + c + 1]!

[b + c − a]!

)1/2

(3.3)

H [abiz] = ([a + z − i]![ a + z + i + 1]![b − z − i]![ b − z + i + 1]!)1/2 (3.4)

and theq-phase is expressed in terms of (2.10). We see that forb′ − b + v = 0 in (3.1a)
J̃ = Ĩ ′ and in (3.1b) J̃ ′ = Ĩ . In general, we may verify the biorthogonality relations∑

J̃

(ηĨ
′,−,−|η−,+,J̃ )q(η−,+,J̃ |ηJ̃ ′,−,−)q = δĨ ′,J̃ ′ (3.5a)

∑
J̃ ′
(η−,+,Ĩ |ηJ̃ ′,−,−)q(ηJ̃

′,−,−|η−,+,J̃ )q = δĨ ,J̃ (3.5b)
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for (3.1a) and (3.1b) straightforwardly, unless̃I ′ > J̃ ′ in (3.5a) or Ĩ > J̃ in (3.5b) when
we should use the summation formula∑
j

(−1)p4−j [2j + 1][j − p1− 1]![j − p2− 1]![j − p3− 1]!

[p1+ j + 1]![p2+ j + 1]![p3+ j + 1]![p4− j ]![p4+ j + 1]!

= [−p1− p2− 2]![−p2− p3− 2]![−p1− p3− 2]!

[p1+ p4+ 1]![p2+ p4+ 1]![p3+ p4+ 1]![−p1− p2− p3− p4− 3]!
(3.6)

(cf special very well-poised basic hypergeometric series6φ5 as (2.4.2) of [29]).
Now let us consider the overlaps of another kind. The first isofactor on the right-hand

side of (2.9b) is proportional to{ 1
2a
′ + z̃′ Ĩ ′ 1

2a
′

1
2b
′′ J̃ J

}
for the fixed HWS of the second and resulting irreps on the left-hand side, with the
summation parameters accepting valuesj2 = 1

2b
′′ andj3 = 1

2(a
′′ +b′′). Then the remaining

isofactors may be expressed without sum and (3.6) leads to the following expression for the
overlaps:

(ηĨ ′,−,−|η−,+,J̃ )q ≡
∑
ρ

[
(a′b′) (a′′b′′) ρ(ab)

ỹ ′Ĩ ′ y ′′0 i
′′
0 y0i0

](3)
q

[
(a′b′) (a′′b′′) ρ(ab)

y ′0i
′
0 y ′′0i

′′
0 ỹJ̃

](3)
q

= (−1)a−a
′′+(a′−b′′)/2+J̃ qQ1(a

′b′a′′b′′ab;J̃ z̃)+Q1(abb
′′a′′a′b′;Ĩ ′ z̃′)−a′′/2−b′′

× [a′′ + b′′ + 1]!([a + 1][b + 1][a + b + 2])1/2

∇[ 1
2b
′′, 1

2a
′, J̃ ]∇[ 1

2a
′′, 1

2a, Ĩ
′]H [a′b′Ĩ ′z̃′]H [abJ̃ z̃]

(
[Ĩ ′ − z̃′]![ J̃ − z̃]!
[Ĩ ′ + z̃′]![ J̃ + z̃]!

)1/2

×([2Ĩ ′ + 1][b′]![ a′ + b′ + 1]![a′′]![ b′′]![ b + 1]![a + b + 2]!)1/2

×
∑
s

[J̃ + z̃+ s]![ 1
2(a
′′ − a)+ Ĩ ′ + s]![ a − s]![ a′ − v − s]!

[s]![ J̃ − z̃− s]![ 1
2(a − a′′)+ Ĩ ′ − s]![ v + s]!

× [b′ − a′′ + a + v − s]!
[b′ + b′′ + a + v − s + 2]!

. (3.7)

Now the intermediate expansion technique leads to the expression containing a double
sum for the overlaps of the coupled states of the same type

(η−,+,Ĩ |η−,+,J̃ )q ≡
∑
ρ

[
(a′b′) (a′′b′′) ρ(ab)

y ′0i
′
0 y ′′0i

′′
0 ỹĨ

](3)
q

[
(a′b′) (a′′b′′) ρ(ab)

y ′0i
′
0 y ′′0i

′′
0 ỹJ̃

](3)
q

=
∑
Ĩ ′
(η−,+,Ĩ |ηĨ

′,−,−)q(ηĨ ′,−,−|η−,+,J̃ )q

= (−1)Ĩ−J̃ qQ1(a
′b′a′′b′′ab;Ĩ z̃)+Q1(a

′b′a′′b′′ab;J̃ z̃)

×[a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]![a′′]![ a′′ + b′′ + 1]!

× ∇[ 1
2b
′′, 1

2a
′, Ĩ ]H [abĨ z̃]

∇[ 1
2b
′′, 1

2a
′, J̃ ]H [abJ̃ z̃]

(
[Ĩ + z̃]![ J̃ − z̃]!
[Ĩ − z̃]![ J̃ + z̃]!

)1/2

×
∑
s,ĩ ′

[J̃ + z̃+ s]![ 1
2(a
′′ − a)+ ĩ ′ + s]![ a − s]![ a′ − v − s]!

[s]![ J̃ − z̃− s]![ 1
2(a − a′′)+ ĩ ′ − s]![ v + s]!
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× [b′ − a′′ + a + v − s]![2 ĩ ′ + 1][ ĩ ′ − z̃′]!(−1)(b−b
′−v)/2−Ĩ+ĩ ′

[b′ + b′′ + a + v − s + 2]![ ĩ ′ + z̃′]!∇2[ 1
2a
′′, 1

2a, ĩ
′]H 2[a′b′ ĩ ′z̃′]

× [Ĩ + ĩ ′ + 1
2(b
′ − b + v)]!(b′ − b + v|q)(b−b′−v)/2−Ĩ+ĩ ′

[ 1
2(b − b′ − v)− Ĩ + ĩ ′]![ 1

2(b − b′ − v)+ Ĩ + ĩ ′ + 1]!
. (3.8)

For b − b′ − v = 0 we have in (3.8) a single sum, since1
2(b − b′ − v) − Ĩ + ĩ ′ = 0, and

for b− b′ − v > 0 all the terms on the right-hand side of (3.8) have the same sign (but the
number of values accepted bỹI and J̃ may exceed the multiplicity of irrep(a b) in the
coproduct(a′b′)⊗ (a′′b′′) decomposition).

Returning to equation (3.7), note that its SU(3) version may also be derived integrating
over the group the product of three special SU(3)D-functions, presented by Norvaišas [31]
in Holland’s [32] (see also Pluhař et al [33]) parametrization. We see that the sum on the
right-hand side of (3.7) corresponds to the balanced (Saalschützian) 5φ4 basic (or5F4(1)
classical) hypergeometric series, depending on eight free parameters. Forv > 0 it may be
written in terms of series

[A1+ n− 1]![A2+m− 1]![N1]![N2]![N3]!

[n]![m]![A3]![B − 1]!
5F4

[−n,−m,A1+ n,A2+m,−A3

−N1,−N2,−N3, B
; q, 1

]
(3.9a)

with

n = J̃ − z̃ m = 1
2(a − a′′)+ Ĩ ′ A1 = 2z̃+ 1 A2 = a′′ − a + 1

A3 = b′ + b′′ + a + v + 2 B = v + 1 N1 = a
N2 = a′ − v N3 = b′ − a′′ + a + v. (3.9b)

(For v < 0, the summation parameters ′ = v+ s should be used instead ofs). We use here
the series (cfÁlvarez–Nodarse and Smirnov [34])

p+1Fp

[
α1, α2, . . . , αp+1

β1, . . . , βp
; q, x

]
=
∞∑
k

(α1|q)k(α2|q)k . . . (αp+1|q)k
(β1|q)k . . . (βp|q)k(q|q)k xk (3.10)

(with x = q±(c+1), c = ∑p+1
i=1 αi −

∑p

j=1 βj in the sums which appear in the coupling or
recoupling coefficients andc = −1 for the balanced series) instead of the standard basic
hypergeometric function (see Gasper and Rahman [29], Grozaet al [1], Kachurik and
Klimyk [2])

p+1φp

[
qα1, qα2, . . . , qαp+1

qβ1, . . . , qβp
; q, z

]
= p+18p

[
α1, α2, . . . , αp+1

β1, . . . , βp
; q, z

]
(3.11a)

= p+1Fp

[
α1, α2, . . . , αp+1

β1, . . . , βp
; q1/2, q(c−1)/2z

]
. (3.11b)

In the series of the type (3.10) which appear in the coupling and recoupling coefficients of
uq(n), usuallyx = q±(c+1).

The second sum on the right-hand side of (3.8) corresponds to the very well-poised10φ9

basic (or classical9F8(1) in the SU(3) andq = 1 case) hypergeometric series of the type

2r+2φ2r+1

[
q−2p1−1, q−p1+1/2,−q−p1+1/2, q−p1−p2−1, . . . , q−p1−p2r−1

q−p1−1/2,−q−p1−1/2, qp2−p1+1, . . . , qp2r−p1+1 ; q, q
∑

i pi+2r−1

]
=

∏r ′+r ′′
i=r ′+1[pi − p1]![pi + p1+ 1]!

[−2p1− 1]!
∏2r
i=r ′+r ′′+1[p1− pi − 1]![−pi − p1− 2]!
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×
r ′∏
i=2

[pi − p1]!

[−p1− pi − 2]!

∑
j

(−1)r
′(p1+j+1)[2j + 1]

×
∏r ′
i=1[j − pi − 1]!

∏2r
i=r ′+r ′′+1([j − pi − 1]![−j − pi − 2]!)∏r ′+r ′′

i=1 [pi + j + 1]!
∏r ′+r ′′
i=r ′+1[pi − j ]!

p1 6 p2, . . . , pr ′ 6 −p1− 2< min(pr ′+1, . . . , pr ′+r ′′) 6 −pr ′+r ′′+i − 2

(3.12)

again depending on eight free parameters

p1 = 1
2(b − b′ − v)− Ĩ − 1 p2 = z̃′ − 1 p3 = 1

2(a
′′ − a)− 1

p4 = 1
2(a − a′′)− s − 1 p5 = 1

2(b − b′ − v)+ Ĩ p6 = 1
2(a
′′ + a)

p7 = a′ + z̃′ p8 = b′ − z̃′ (3.13)

with r ′ = 4 or 5 andr ′′ = 4 or 3 andp1 + j + 1 used as the expansion parameterk of
10φ9. In particular, the left-hand side of (3.6) corresponds to a special case of (3.12) with
r = 2. For Ĩ = z̃ or 1

2(b
′′ − a′) the summation parameters is fixed in (3.8) and the second

sum turns into the very well-poised8φ7 which again may be transformed into balanced4φ3

series, in accordance with the Whipple [35] and Watson [36] transformation formula (see
(2.5.1) of [29]).

When the number of values accepted by the multiplicity labelsJ̃ or Ĩ ′ does not exceed
the multiplicity r of irrep (a b) in the coproduct(a′b′)⊗ (a′′b′′) decomposition, the inverse
overlap matrix(η−,+,J̃ |ηĨ ′,−,−)q , which satisfies the biorthogonality relations∑

Ĩ

(ηJ̃ ′,−,−|η−,+,Ĩ )q(η−,+,Ĩ |ηĨ
′,−,−)q = δĨ ′,J̃ ′ (3.14a)

∑
Ĩ ′
(η−,+,Ĩ |ηĨ ′,−,−)q(ηĨ ′,−,−|η−,+,J̃ )q = δĨ ,J̃ (3.14b)

may be introduced. Particularly, whenr is determined by an entree of the left column of
array (2.8b), i.e. forb′′ −a′ +v > 0 anda′′ −a−v > 0, the analytical inversion substitution
(cf Ali šauskas [26]†).
(a′, b′)→ (−a′ − 2,−b′ − 2) (a′′, b′′)→ (−a′′ − 2,−b′′ − 2)

(a, b)→ (a − 2,−b − 2) Ĩ ′ → Ĩ ′ Ĩ ′ → Ĩ ′

v→−v z̃→−z̃ z̃′ → −z̃′ (3.15)

into (3.7), together with the change of the summation parameters → s ′ − a − 1 and some
q-dimensional factor, leads to the expression of the inverse overlap matrix

(η−,+,J̃ |ηĨ ′,−,−)q = (−1)Ĩ
′+z̃′q−Q1(a

′b′a′′b′′ab;J̃ z̃)−Q1(abb
′′a′′a′b′;Ĩ ′ z̃′)+a′′/2+b′′ [2J̃ + 1]

×([a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]![a′′]![ b′′]!)−1/2∇[ 1
2a
′′, 1

2a, Ĩ
′]

×∇[ 1
2b
′′, 1

2a
′, J̃ ]H [a′b′Ĩ ′z̃′]H [abJ̃ z̃]

[a′′ + b′′ + 1]!

(
[2Ĩ ′ + 1][Ĩ ′ + z̃′]![ J̃ + z̃]!

[Ĩ ′ − z̃′]![ J̃ − z̃]!

)1/2

×
∑
s ′

[a − s ′]![ a + v − s ′]!
[s ′]![ a + z̃− J̃ − s ′]![ a + z̃+ J̃ − s ′ + 1]![ 1

2(a + a′′)− Ĩ ′ − s ′]!

× [b′ + b′′ + v + s ′ + 2]!

[ 1
2(a + a′′)+ Ĩ ′ − s ′ + 1]![a′ − a − v + s ′]![ b′ − a′′ + v + s ′]! . (3.16)

† Note that in addition to the corrections presented in the footnote of [28], the numerator factor(a+ b′′ + v+ 2)!
of (3.6) of [26] should be corrected into(a + b′ + v + 2)! and iz should be replaced bỹiz in (A1).
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For b′′ − a′ + v > 0 and fora′′ − a− v > 0, respectively, we may prove the biorthogonality
relations (3.14a) and (3.14b) with inserted expressions (3.7) and (3.16), after using the
summation formula∑

j

(−1)p1+j+1[2j + 1][j − p1− 1]!

[p1+ j + 1]![p2− j ]![p2+ j + 1]!
= δp1+p2+1,0 (3.17)

with p1 6 −1, (cf special very well-poised basic hypergeometric series4φ3 of the
type (3.12)–(2.3.4) of [29]) and obtain a dependence between the summation parameters
a − s − s ′ = 0. Then, as the last step, for̃J ′ > Ĩ ′ or J̃ > Ĩ we use the Gauss–Heine
summation formula∑

s

(−1)sqs(b+c−a−1) [a − s]!
[s]![ b − s]![ c − s]! = q

bc [a − b]![ a − c]!
[b]![ c]![ a − b − c]! (3.18)

(cf basic hypergeometric series2φ1—(1.5.1) of [29]), when forJ̃ ′ 6 Ĩ ′ or J̃ 6 Ĩ relations
(3.14a) and (3.14b) may be verified straightforwardly. Hence, we see that the number of
values accepted bỹJ in (3.14a) or by Ĩ ′ in (3.14b) may exceedr separately. Unfortunately,
for

a′′ − a − v < 0 and b′′ − a′ + v < 0 (3.19)

both together, equation (3.16) cannot be used (sincep1 > 0) even if J̃ and Ĩ ′ both accept
the same number of values coinciding withr. The sense of (3.16) in this region for the
representation theory of uq(3) is not clear, as well as the sense of the sum∑
s

[J̃ − z̃+ s]![ 1
2(a − a′′)+ Ĩ ′ + s]!

[s]![ J̃ + z̃− s]![ 1
2(a
′′ − a)+ Ĩ ′ − s]![ a + 1+ s]!

× [b′ + b′′ + a + v + s + 3]!

[a′ − v + 1+ s]![ b′ − a′′ + a + v + s]![−v + s]! (3.20)

which appears after the substitution of (3.15) into (3.7) without the changes → s ′ − a − 1
and corresponds to an alternative summation interval of formal series.

Now we see that the sum on the right-hand side of (3.16) corresponds to the balanced
(Saalscḧutzian) 5φ4 basic (or5F4(1) classical) hypergeometric series, depending on eight
free parameters, which fora′′ − a− v > 0 or b′′ − a′ + v > 0 may be written again in terms
of series (3.10)

[A′3− 1]![N ′1]![N ′2]!

[n′]![m′]![A′1− n′]![A′2−m′]![B ′1− 1]![B ′2− 1]!

×5F4

[−n′,−m′, A′1+ n′, A′2+m′,−A′3
−N ′1,−N ′2, B ′1, B ′2

; q, 1

]
(3.21a)

with

n′ = a + z̃− J̃ m′ = 1
2(a + a′′)− Ĩ ′ A′1 = 2a + 2z̃+ 1

A′2 = a + a′′ + 1 A′3 = b′ + b′′ + v + 2 N ′1 = a N ′2 = a + v
B ′1 = a′ − a − v + 1> 0 B ′2 = b′ − a′′ + v + 1> 0. (3.21b)

(Otherwise the summation parameters ′′ = a′ − a − v + s ′ or b′ − a′′ + v + s ′ should be
used instead ofs ′.)

Thus forn 6 N1, m 6 N1, A1−B > 0, A2−B > 0 integers andN1+N2+N3+A1+
A2− A3− B + 1= 0 we get the biorthogonal system of functions

R(3)n,m = 5F4

[−n,−m,A1+ n,A2+m,−A3

−N1,−N2,−N3, B
; q, 1

]
[A1+ n− 1]![A2+m− 1]!

[n]![m]!
(3.22a)
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and

S(3)m,n = 5F4

[−N1+ n,−N1+m,−A1−N1− n,−A2−N1−m,A3−N1+ 1

−N1,−N1− B,N2−N1+ 1, N3−N1+ 1
; q, 1

]
× (−1)m+n[A1+ 2n− 1][A2+ 2m− 1]

[N1− n]![N1−m]![A1+N1+ n]![A2+N1+m]!
(3.22b)

which satisfy the biorthogonality relations∑
m

R(3)n,mS
(3)
m,n′ = δn,n′

[A3]![B − 1]![N2−N1]![N3−N1]!

[N1]![N2]![N3]![N1]![N1+ B − 1]![A3−N1]!
(3.23a)

for A2− B > 0 and∑
n

S(3)m,nR
(3)
n,m′ = δm,m′

(−1)N1(−A3|q)N1

([N1]!)2(−N2|q)N1(−N3|q)N1(B|q)N1

(3.23b)

for A1− B > 0 (with the same positive norm written in the right-hand side of (3.23a) and
(3.23b) in different forms).

At last and at least fora′′ − a − v > 0, we may write an expression for the overlap of
the coupled states (with superscript)

(η−,+,Ĩ |η−,+,J̃ )q

≡
∑

y ′,y ′′,i ′,i ′′

[
(a′b′) (a′′b′′) −,+,Ĩ (ab)
y ′i ′ y ′′i ′′ yi

](3)
q

[
(a′b′) (a′′b′′) −,+,J̃ (ab)
y ′i ′ y ′′i ′′ yi

](3)
q

=
∑
Ĩ ′
(η−,+,Ĩ |ηĨ ′,−,−)q(ηĨ

′,−,−|η−,+,J̃ )q

= q−Q1(a
′b′a′′b′′ab;Ĩ z̃)−Q1(a

′b′a′′b′′ab;J̃ z̃)[2Ĩ + 1][2J̃ + 1]

[a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]![a′′]![ a′′ + b′′ + 1]!

×∇[ 1
2b
′′, 1

2a
′, J̃ ]H [abJ̃ z̃]

∇[ 1
2b
′′, 1

2a
′, Ĩ ]H [abĨ z̃]

(
[Ĩ − z̃]![ J̃ + z̃]!
[Ĩ + z̃]![ J̃ − z̃]!

)1/2

×
∑
s ′,ĩ ′

[a − s ′]![ a + v − s ′]![ b′ + b′′ + v + s ′ + 2]!

[s ′]![ a + z̃− J̃ − s ′]![ a + z̃+ J̃ − s ′ + 1]![ 1
2(a + a′′)− ĩ ′ − s ′]!

× [2ĩ ′ + 1][ ĩ ′ + z̃′]!H 2[a′b′ ĩ ′z̃′]∇2[ 1
2a
′′, 1

2a, ĩ
′]

[ 1
2(a + a′′)+ ĩ ′ − s ′ + 1]![a′ − a − v + s ′]![ b′ − a′′ + v + s ′]![ ĩ ′ − z̃′]!

× [Ĩ + ĩ ′ + 1
2(b − b′ − v)]!(b − b′ − v|q)(b′−b+v)/2−ĩ ′+Ĩ

[ 1
2(b
′ − b + v)+ Ĩ − ĩ ′]![ 1

2(b
′ − b + v)+ Ĩ + ĩ ′ + 1]!

. (3.24)

Again, the second sum overĩ ′ on the right-hand side of (3.24) corresponds to the very
well-poised10φ9 basic (or classical9F8(1) in the SU(3) andq = 1 case) hypergeometric
series of the type (3.12), depending on eight free parameters

p′1 = 1
2(b
′ − b + v)+ Ĩ p′2 = −z̃′ − 1 p′3 = 1

2(a − a′′)− 1

p′4 = 1
2(a
′′ + a)− s ′ p′5 = 1

2(b
′ − b + v)− Ĩ

p′6 = − 1
2(a
′′ + a)− 2p′7 = −a′ − z̃′ − 2 p′8 = −b′ + z̃′ − 2 (3.25)

with r ′ = 2 andr ′′ = 3 or 2, but with the different ordering of the parameters (withp′1 > 0
andp′1 − j used as the expansion parameterk of 10φ9) to compare with the (3.12) case.
Again we have a single sum forb− b′ − v = 0, i.e. for equal the middle and right columns
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of array (2.8b), but additional restrictions of the second sum appear forb − b′ − v < 0 in
contrast with the (3.8) case. The summation parameters ′ is fixed for J̃ = a + z̃ or b − z̃
or 1

2(a
′ + b′′) and again the second sum may be rearranged into balanced4φ3 series.

4. Elementary overlaps related to theq-Racah coefficients and some canonical
isofactors with the minimal null space

The recoupling coefficients of uq(2) (q-Racah coefficients orq 6j -coefficients), related
to the balanced basic hypergeometric functions4φ3(q) (see Kachurik and Klimyk [2],
Rajeswari and Srinivasa Rao [3]) and to the well-poised basic hypergeometric functions
8φ7(q) (in accordance with the Watson [36] transformation) also appear in the mutual
expansion coefficients of some definite systems of uq(3) isofactors.

Equation (2.11) with inserted (2.12a) and (2.12b) and extreme values of parameters for
b′−b+v > 0 has the summation parameterj2 = 0 and the remaining summation parameters
fixed and gives expression for overlaps of the coupled uq(3) states which correspond to
the different families of the paracanonical coupling coefficients in terms of theq-Racah
coefficients (in accordance with the Regge type symmetry of the extreme first isofactor in
the right-hand side of (2.11)—see Ališauskas and Smirnov [8])

(η+,−,j̃ |η−,+,Ĩ )q ≡
[
(a′b′) (a′′b′′) −,+,Ĩ (ab)
y ′0i
′
0 y ′′0 i

′′
0 Ỹ j̃

](3)
q

= q(a−b)(a′−b′+a′′−b′′)/2−Q1(a
′b′a′′b′′ab;Ĩ z̃)−Q1(a

′′b′′a′b′ab;j̃ Z̃)

×[2Ĩ + 1]

(
[ 1

2(a
′′ + b′)+ j̃ + 1]![ 1

2(a
′′ + b′)− j̃ ]![ a′]![ b′′]!

[ 1
2(a
′ + b′′)+ Ĩ + 1]![ 1

2(a
′ + b′′)− Ĩ ]![ a′′]![ b′]!

)1/2

×(−1)a
′+b′′+(a′′+b′)/2+j̃

{ 1
2(a
′ − b′′ + b − v) 1

2(b − v) Î
1
2(a
′′ − b′ + b − v) 1

2a j̃

}
q

. (4.1)

Equation (4.1) is also valid fora′′ − a − v > 0. Otherwise, the inverse expansion
coefficients—overlaps(η−,+,Ĩ |η+,−,j̃ )q for a′ − a − v > 0 or b′′ − b + v > 0 may be
derived from (4.1) using the substitution

(a′b′)→ (b′a′) (a′′b′′)→ (b′′a′′) (ab)→ (ba) v→−v
j̃ ↔ Ĩ q → q−1 (4.2)

together with the corresponding phase factor (see [10]), i.e. they include the sameq 6j -
coefficient, factor [2̃j +1] instead of [2̃I +1] and an inverted remaining factor. These non-
unitary expansion coefficients are correlated with the unitary transition (Weyl) coefficients
betweenU andT bases (Smirnov and Malashin [37], Malashinet al [38], Asherovaet al
[39]) for all three entrees of the coupling coefficients[
(a′b′) (a′′b′′) ρ(ab)

y ′0i
′
0i
′
0 y ′′0i

′′
0,−i

′′
0 ỹĨ , i ′0− i

′′
0

](3)
q

and

[
(a′b′) (a′′b′′) ρ(ab)

y ′0i
′
0,−i

′
0 y ′′0 i

′′
0 i
′′
0 Ỹ j̃ , i ′′0 − i

′
0

](3)
q

(4.3)

(i.e. identities for the HWS or LWS and the uq(2) recoupling coefficients in the general
case), but an additionalq-phase is also necessary, since the expressions for (3.2) are not
invariant under substitutionq ↔ q−1. For b′ −b+ v < 0 anda′′ −a− v < 0 both together,
overlap(η+,−,j̃ |η−,+,Ĩ )q gives the expansion coefficients of the coupled states|η+,−,j̃ )q in
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terms of the overcomplete states|η−,+,Ĩ )q , as well as(η−,+,Ĩ |η+,−,j̃ )q for a′ − a − v < 0
andb′′ − b+ v < 0 gives the expansion coefficients of the coupled states|η−,+,Ĩ )q in terms
of the overcomplete states|η+,−,j̃ )q , which should be expanded in terms of the complete
basis. Hence, in these regions the problem of inversion of the truncated uq(2) recoupling
matrix appears (cf the SU(2) case, [26]).

The same equation (2.11) with inserted (2.13a) and (2.12b) and extreme values of
parameters forb− b′ − v > 0 or b′′ − a′ + v > 0 gives the boundary isofactors which allow
(in terms of isofactors related to (2.9), but with the subscriptĨ ′,−,−) the bilinear combinations
of isofactors cover with the MIS, which are characterized by parameters (2.7c) and correlated
(whenb− b′′ − v > 0 anda− a′′ + v > 0 see [10, 26]) with the canonical coupling scheme
of Biedenharn and Louck [17, 40]:

(ηĴ ′,↑,↑|ηĨ
′,−,−)q =

[
(a′b′) (a′′b′′) Ĩ ′,−,−(ab)
ŷ ′Ĵ ′ y ′′mi

′′
m ymim

](3)
q

=
(

[2Ĵ ′ + 1][2Ĩ ′ + 1][a′′]![ a + 1]![ im+ i ′′m− Ĵ ′]![ im+ i ′′m+ Ĵ ′ + 1]!

[ 1
2(a
′′ + a)− Ĩ ′]![ 1

2(a
′′ + a)+ Ĩ ′ + 1]![a′′ + b′′]![ a + b + 1]!

)1/2

×(−1)a
′′−b′′−a+bqQ2

{ 1
2(b
′ + b′′ − b + v) 1

2(b
′ − a′′ + a + v) Ĵ ′

1
2(b
′ + v) 1

2a
′ Ĩ ′

}
q

(4.4)

where

Q2 = 1
8(a − a′′)(a − a′′ + 2)− 3

2 Ĩ
′(Ĩ ′ + 1)− 1

2 Ĵ
′(Ĵ ′ + 1)

+ 1
2(im− i ′′m)(im− i ′′m+ 1)+ 1

2a
′(a′ + 1)− (a′ + z̃′)2

+ 1
2(b
′ + b′′ − b + v)(2a′ + b′ − b′′ + b − v + 3). (4.5)

We note from [10] that the canonical uq(3) isofactors are determined (under the definite
restrictions) by the vanishing condition of the extreme isofactors[

(a′b′)
t

(a′′b′′) (ab)

y ′i ′ y ′′mi
′′
m yi

](3)
q

(4.6a)

with parameters

|i − i ′| > i ′′m− t + 1 (4.6b)

where isospin accepts the special valuesi ′′m ≡ 1
2(a
′′ + b′′) andy ′′m = 1

3(a
′′ − b′′). Hence,Ĵ ′

is correlated in (4.4) with the multiplicity labelt = Ĵ ′ + i ′′m− im+1 of the canonical tensor

operatorT (a
′′b′′)t,q

y ′′i ′′i ′′z
if the extreme isofactor[
(a′b′)

t=1
(a′′b′′) (ab)

ŷ ′im− i ′′m y ′′mi
′′
m ymim

](3)
q

(4.6c)

does not vanish. Particularly, the coupled non-orthonormal state|ηĴ ′,↑,↑)q includes the

canonical coupled states witht 6 Ĵ ′ + i ′′m− im+ 1. The multiplicity labelt accepts values
1, 2, . . . ,M, whereM is the number of independent canonical tensor operators

M =minrα′β ′γ + 1 (α′ = 2, 3;β ′ = 2, 3; γ = 1, 2) (4.7)

characterized by the 2× 2× 2 subarray of (2.8b).
For the external multiplicityr determined bya′ + a′′ − a− v or b′ + b′′ − b− v 6 rαβγ

from array (2.8b), the overlap matrix(ηĴ ′,↑,↑|ηĨ
′,−,−)q may be inverted and(ηĨ ′,−,−|ηĴ

′,↑,↑)q
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may be expressed in terms of the same recoupling matrix (q 6j -coefficients with factor
(−1)a

′′+b′′+a+b([2Ĵ ′ + 1][2Ĩ ′ + 1])1/2), with the remaining factors in the right-hand side of
(4.4) inverted. In this case the expansion coefficients (4.4) in terms of the uq(2) recoupling
coefficients are correlated with the transition coefficients betweenV andU bases (orV
and T bases, see Malashinet al [38]) for all three entrees of some coupling coefficients
(i.e. the identities for the HWS, LWS or MIS and the uq(2) recoupling coefficients with
braiding [41] in the general case), but an additionalq-phase is also necessary, in addition to
the braidingq-phase of the typeq±Ĩ

′(Ĩ ′+1) which appears, for example, in the composition
of (η−,+,J̃ |ηĨ ′,−,−)q and (ηĨ ′,−,−|ηĴ

′,↑,↑)q , in contrast with the compositions of overlaps
presented by (4.1) and in section 3, where such aq-phase is eliminated. In this case
the coupled non-orthonormal state|ηĴ ′,↑,↑)q includes the canonical coupled states with
t > Ĵ ′ + i ′′m− im+ 1 and the state with maximal value ofĴ ′ = 1

2(a
′ + b′ − |v|) leads to the

canonical isofactor with the maximal value oft .
For the highest weight component of tensorT (a

′′b′′)t,q
y ′′0 i
′′
0 i
′′
z0

we may derive the extreme
isofactors[
(a′b′) (a′′b′′) Ĵ ′,↑,↑(ab)
y ′i ′ y ′′0 i

′′
0 yi

](3)
q

=
∑
Ĩ ′
(ηĴ

′,↑,↑|ηĨ ′,−,−)q
[
(a′b′) (a′′b′′) Ĩ ′,−,−(ab)
y ′i ′ y ′′0 i

′′
0 yi

](3)
q

(4.8a)

= 0[a′b′i ′z′]0[a′b′Ĵ ′ẑ′]∇[i ′′0 ii
′]

0[abiz]∇[i ′′mimĴ ′]

(
[2i ′ + 1][2Ĵ ′ + 1][a′′ + b′′]!

[a′′]![ a]![ b]!

)1/2

×
∑
n1,n2

(−1)v+i
′+i ′′0−i+n1+n2qQ3(Ĵ

′)−(a′+a′′−a−v−n1)(i
′+z′+v−n2)

[n1]![ n2]![ 1
2(a
′ + b′ + v)− Ĵ ′ − n1]![ 1

2(a
′ + b′ + v)+ Ĵ ′ − n1+ 1]!

× [a′ − n1]![ a′ + b′ + 1− n1]![2 i ′ − n2]![ a + z + i ′′0 + i ′ − n2+ 1]!

[i ′ + i ′′0 − i − n2]![ i ′ + i ′′0 + i − n2+ 1]![a′ + z′ + i ′ − n1− n2+ 1]!

(4.8b)

where∇[abc] is expressed as (3.3),

z̃′ = 1
2(a
′′ − a)− v) ẑ′ = 1

2(b
′ − a′ + v)

0[abiz] =
(

[i + z]![ a + z − i]![ a + z + i + 1]!

[i − z]![ b − z − i]![ b − z + i + 1]!

)1/2

(4.9)

and

Q3(Ĵ
′) = 1

2{(a + 2z)( 1
2a
′′ + b′′)− (b′ + b′′ − b + v)(2a′ + b′ − b′′ + b − v + 3)

+i0(i0+1)− i(i + 1)+ i ′(i ′ + 1)+ Ĵ ′(Ĵ ′ + 1)− (im− i ′′m)(im− i ′′m+ 1)

+(i0− i ′′0)(i0− i ′′0 + 1)− a′(a′ + 1)} + (a′ + z̃′)2. (4.10)

In order to derive (4.8b), we expressed special isofactor with superscriptĨ ′,−,− in (4.8a)
by means of (4.6) of [9], using the symmetry relations of the type (4.5b) and (4.2a) of
[10]. Theq 6j -coefficients which appeared in both the factors of (4.8a), were expressed by
means of theq-analogue of the less symmetric expression (29.1c) of Jucys and Bandzaitis
[42] (see (5.22) of Asherovaet al [39]) with the triangles1

2a+ z, i ′, Ĩ ′ and 1
2a
′ + z̃′, 1

2a
′, Ĩ ′

instead of parametersf, b, d of the 6j -coefficients, respectively. After using the summation
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formula∑
j

(−1)p1+j+1qj(j+1)−p1(p1+1)[2j + 1][j − p1− 1]!

[p1+ j + 1]![p2− j ]![p2+ j + 1]![p3− j ]![p3+ j + 1]!

= q(p1+p2+1)(p1+p3+1)

[p1+ p2+ 1]![p1+ p3+ 1]![p2+ p3+ 1]!
(4.11)

considered in the next section, we obtain that both the remaining sums in (4.8b) are of the
3φ2 type and depend on nine parameters both together (from ten independent parameters in
the left-hand side).

For v 6 0 and Ĵ ′max = 1
2(a
′ + b′ + v) we have ratio of the minimal null space case

isofactors [
(a′b′)

tmax

(a′′b′′) (ab)

y ′i ′ y ′′0 i
′′
0 yi

](3)
q

([
(a′b′)

tmax

(a′′b′′) (ab)

ŷ ′Ĵ ′max y ′′mi
′′
m ymim

](3)
q

)−1

(4.12a)

with tmax = a′ + a′′ − a − v + 1, instead of the left-hand side of (4.8a), fixed summation
parametern1 = 0 and the remaining sum of the3φ2 type in the right-hand side Otherwise,
for v > 0 and Ĵ ′max = 1

2(a
′ + b′ − v) we use (3.18) and express the isofactors with the

minimal null space as follows:[
(a′b′)

tmax

(a′′b′′) (ab)

y ′i ′ y ′′0 i
′′
0 yi

](3)
q

([
(a′b′)

tmax

(a′′b′′) (ab)

ŷ ′Ĵ ′max y ′′mi
′′
m ymim

](3)
q

)−1

= qQ3(Ĵ
′
max)−(i ′+z′)(b′+b′′−b+v)+v(a−a′′+v+1) 0[a′b′i ′z′]∇[i ′′0 ii

′]
0[abiz]([a′′]![ a]![ b]![ v]!)1/2

×
(

[2i ′ + 1][a′′ + b′′]![ a′ + b′ + 1]![a′ − v]![ b′]![ b′ − a′′ + a + v]!

[a′+ b′− v]![ a′′−b′+b−v]![ b′+ b′′−b+v]![ a+b′ + b′′+ v+ 1]!

)1/2

×
∑
n2

(−1)i
′+i ′′0−i+n2q(b

′+b′′−b+v)n2[v + i ′ + z′ − n2]![2 i ′ − n2]!

[n2]![ i ′ + z′ − n2]![ i ′ + i ′′0 − i − n2]![ i ′ + i ′′0 + i − n2+ 1]!

× [a + v + z′ + i ′ − n2+ 1]!

[a′ + z′ + i ′ − n2+ 1]!
(4.12b)

with the single sum of the non-balanced4φ3 type andtmax= b′ + b′′ − b + v + 1.
In the case of the self-adjoint canonical tensor operator of rank(kk) with the maximal

value oft = k+1 from (4.12a) or (4.12b) using (3.18) we obtain expression for the special
isofactor[
(ab)

t=k+1
(kk) (ab)

y ′i ′ y ′′0 i
′′
0 yi

](3)
q

= q3(i ′−i)(i ′+i+1)/2+k(k−6)/8+kz/2([2i ′ + 1])1/20[abi ′z′]

D( q,t=k+1
kk

)[ab; ab]∇[i ′′0 ii ′]0[abiz]
(4.13)

wherei ′′0 = −z′′0 = 1
2k, when the extreme denominator isofactor of (4.12a) or (4.12b) was

expressed as special case of isofactor[
(ab)

t=k+1
(kk) (ab)

yi ′ 0k yi

](3)
q

= δi ′,iq
k(b−a)/6−ky

D( q,t=k+1
kk

)[ab; ab]

(
[k]![2 i + k + 1]!

[2k]![2 i + 1][2i − k]!

)1/2

(4.14)

derived by means of an elementary recursive construction (cf Draayer and Akiyama [27],
Ali šauskas [28]), beginning from thek = 1 case (Smirnov and Kharitonov [7]†).

† The explicit expressions for the uq (3) canonical tensor operators are rather complicated even in the case of rank
(1 1)—see Smirnov and Kharitonov [43]. Note that the substitutionq → q−1 is necessary for the correlation of
our results and isofactors presented by Smirnovet al [4], Smirnov and Kharitonov [6, 7], since they useT -basis.
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Using the symmetry property of the isoscalar factors (see (4.5) of [10]) and the
normalization condition, in some analogy with Loucket al [44] we obtain the square of the
normalization factor

D2

(
q, t = k + 1

kk

)
[ab; ab]

= q(a−b)(k+1)[k + 1][k + 1]![2k + 2]

[2k + 1]![a + 1][b + 1][a + b + 2]

a∑
i−z>0

b∑
i+z>0

q(2k+3)2z [2i + k + 1]!

[2i − k]!
(4.15a)

= q(a−b)(k+1)[k + 1]![k + 1][2k + 2]

[2k + 3]![a + 1][b + 1][a + b + 2]
(q(2k+3)(b−a)(a + b − k + 1|q)2k+3

−q−(2k+3)(a+1)(a − k|q)2k+3− q(2k+3)(b+1)(b − k|q)2k+3) (4.15b)

where the three terms of (4.15b) appeared after the double sum in (4.15a), expanded as∑
n1>0,n2>0

q(2k+3)(n2−n1)[n1+ n2+ k + 1]![A− n1]![B − n2]!

[n1+ n2− k]![A− n1]![B − n2]!
(4.16)

with n1 > 0, n2 > 0 andA = a, B = b, was taken using the standard Gauss–Heine
summation formula∑

s

qs(a+b−c+2) [a − s]![ b + s]!
[s]![ c − s]! = q(b+1)c [a − c]![ b]![ a + b + 1]!

[c]![ a + b − c + 1]!
(4.17)

of terminating2φ1 (cf (1.5.2) of [29]) in three regions, forA = a, B = b;A = −1, B = b
andA = a, B = −1, respectively, and in this way the terms with negative values ofn1 or
n2 were eliminated.

Since the matrix elements of the ‘edge’ components of the self-adjoint canonical tensor
operatorT (kk)k+1,q

y ′′i ′′i ′′z
are presented as (4.13) and (4.14), we may also deduce the isofactors,

corresponding to the border of the weight space of irrep(k k):[
(ab)

t=k+1
(k k) (ab)

(z′)i ′ (i ′′ − k)i ′′ (z)i

](3)
q

=
(

[2i ′ + 1][2k − 2i ′′]!
[2i ′′ − k]![2 i ′′]!

)1/2

× qQ
′
3∇[i ′′i ′i]0[abi ′z′]

D( q,t=k+1
kk

)[ab; ab]∇2[k − i ′′, i ′, i]0[abiz]
(4.18)

with

Q′3 = z(3i ′′ − k)+ 1
2{(a − b)(2i ′′ − k)+ (k − i ′′)(3i ′′ − k − 3)+ 3(i ′ − i)(i ′ + i + 1)}.

(4.19)

(cf (4.4a) of [28] in the SU(3) case.) Equation (4.18) may also be proved by induction,
using recursive construction.

5. Overlaps related to the canonical tensor operators

Since the results of the previous section are insufficient (incomplete) for the expansion of
the coupled states associated with the canonical coupling scheme of uq(3), we consider the
generalization to uq(3) of the Ališauskas [28] construction of the non-orthonormal SU(3)
tensor operators related to the canonical tensor operators. The extreme canonical isofactors
with the minimal value of multiplicity labelt = 1[

(a′b′)
t=1

(a′′b′′) (ab)

y ′0i
′
0 y ′′0 i

′′
0 Ỹ ĩ

](3)
q

[
(a′b′)

t=1
(a′′b′′) (ab)

ŷ ′im− i ′′m y ′′mi
′′
m ymim

](3)
q

(5.1)
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(and Z̃ = 1
2(b
′ − a′′)+ v) may be expressed by means of (3.1) of Ališauskas [10] with the

summation parameters accepting fixed valuesj ′ = 1
2b
′ andm′ = b − b′′ − v − 1

2b
′ + n2.

The 3φ2 type sum overn1 may be rearranged in a such way that the second sum accepts
also the3φ2 form. Both together they may be presented as∑
u1,u2

(−1)u1+u2qu1(b
′+b′′+v+1−u2)−(a′+a′′−a−v)(b′+b′′−b+v−u2)[a + Z̃ − ĩ + u1]![ b′ − u2]!

[u1]![u2]![ b′ + b′′ − b + v − u1− u2]![ a′ + a′′ − a − v − u1]!

× [b′′ − b + v + 1
2(b
′ + a′′)+ ĩ − u1]![ b′′ + 1

2(b
′ + a′′)− ĩ − u2]!

[a + b + 2+ u1]![ 1
2(b
′ + a′′)− ĩ − u2]![ b′ + b′′ + v + 1− u2]!

= [ 1
2(b
′ − a′′)+ ĩ]![ a′ + a′′ − v + 1]![b′′]![ a + Z̃ − ĩ]!

[ 1
2(b
′ + a′′)− ĩ]![ b − Z̃ + ĩ + 1]!

×
∑
j

(−1)(a
′+a′′−a−b−v)/2+j qj (j+1)−(a+b−a′−a′′+v)(a+b−a′−a′′+v+2)/4

∇2[ 1
2b
′′, 1

2b
′, j ]∇2[ 1

2(a
′ + a′′ − a − v), 1

2b, j ]

× [2j + 1]∇2[ 1
2(a
′′ + b′′), ĩ, j ]

[a + 1
2(b
′ + b′′)+ v − j + 1]![a + 1

2(b
′ + b′′)+ v + j + 2]!

. (5.2)

The double sum of the left-hand side of (5.2) was replaced by a single sum using the relation∑
j

(−1)p1+j+1qj(j+1)−p1(p1+1)[2j + 1][j − p1− 1]![j − p2− 1]![j − p3− 1]!

[p1+ j + 1]![p2+ j + 1]![p3+ j + 1]![p4− j ]![p4+ j + 1]!

× [j − p7− 1]![−p7− j − 2]!

[p5− j ]![p5+ j + 1]![p6− j ]![p6+ j + 1]!
= [−p1− p2− 2]![−p1− p3− 2]![−p2− p3− 2]![−p4− p7− 2]!

×[−p6− p7− 2]!{[p4+ p6+ 1]!}−1

×
∑
u,v

(−1)uqu(p4+p5+1−v)−(p1+p4+1−v)(p1+p5+1)[p4− p7− 1− v]!

×{[u]![p1+ p4+ 1− u− v]![p1+ p5+ 1− u]![−p2− p3− 2− u]!

×[p2− p1+ u]![p3− p1+ u]![ v]![p4+ p5+ 1− v]!

×[−p6− p7− 2− v]![p6− p4+ v]!}−1 (5.3)

which is valid for non-negative arguments ofq-factorials and was derived after expressing
the matrix elements〈

ab

YII

∣∣∣∣Eα13E
β

32

∣∣∣∣ abyim
〉
q

(5.4)

as a single sum straightforwardly using the matrix elements of the generator powers (2.17)
of [10] and as double sums, after expressing the state|abyim〉q in terms ofEi−m21 |abyii〉q ,
using the permutation formulae of Smirnovet al [4, 39], in analogy with the SU(3) case (cf
Appendix A of [28]), and rearranging the separate sums, at first as a terminating balanced
4φ3 hypergeometric series and later as terminating3φ2 series.

Although the series in the left-hand side of (5.3) resembles (3.12), the ‘braiding’q-phase
factor qj(j+1)−p2(p2+1) (depending on the summation parameterj ) excludes the very well-
poised9φ8 basic hypergeometric series, but theq-versions of relations (A5a) and (A5b) of
[28]† may be extended for rearrangement (without anyq-phase) of the very well-poised

† Note that the factor(p1 − p2 + u)! should appear instead of(p1 − p2 + u) in (A5a) of [28] and some other
corrections are presented as footnotes in [10].
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10φ9 basic hypergeometric series of the type (3.12) in (3.8) and (3.24) into the double
sums—compositions of balanced4φ3 basic hypergeometric series. Nevertheless, the left-
hand side of (5.3) forq = 1 corresponds to the very well-poised classical8F7(−1) series.
Otherwise, both the separate sums in the right-hand side are of the3φ2 (or 3F2) type. Taking
p7 = −p6− 2 we obtain the transformation formula∑
j

(−1)p1+j+1qj(j+1)−p1(p1+1)[2j + 1][j − p1− 1]![j − p2− 1]![j − p3− 1]!

[p1+ j + 1]![p2+ j + 1]![p3+ j + 1]![p4− j ]![p4+ j + 1]![p5− j ]![p5+ j + 1]!

= [−p1− p2− 2]![−p1− p3− 2]![−p2− p3− 2]!

[p4+ p5+ 1]!

∑
u

(−1)u

[u]![p1+ p4+ 1− u]!

× qu(p4+p5+1−v)−(p1+p4+1−v)(p1+p5+1)

[p1+ p5+ 1− u]![−p2− p3− 2− u]![p2− p1+ u]![p3− p1+ u]!
(5.5)

resembling the Watson [36] transformation. Otherwise, the left-hand side of (5.5)
corresponds to the sum which appeared in the expression for the uq(2) Clebsch–Gordan
coefficients, derived byÁlvarez-Nodarse and Smirnov [34], when the right-hand side
corresponds to the most symmetric expression of the uq(2) Clebsch–Gordan coefficients
(Ruegg [45]). Again, forq = 1 we obtain the relation between the very well-poised
classical6F5(−1) series and the3F2(1) series

6F5

(
a, 1+ 1

2a, b, c, d,−n
1
2a, 1+ a − b, 1+ a − c, 1+ a − d, 1+ a + n ;−1

)
= (1+ a)n
(1+ a − b)n 3F2

(
b, a − c − d + 1,−n
1+ a − c, 1+ a − d, ; 1

)
(5.6)

resembling the Whipple [35] transformation.
We may also takep2 = −p3−2 in (5.5), relabel the parameters and obtain the summation

formula (4.11), which is theq-analogue of the special summation formula of terminating
4F3(−1) (cf (2.3.4.8) of Slater [46]).

Let us return to our expression for (5.1). Using symmetry relation (4.2a) of [10] after
inserting (3.8) of [10] for the second isofactor in (5.1), we obtain the boundary canonical
isofactor, related to the overlap(ηim−i ′′m,↑,↑|η−,+,Ĩ )q :[
(a′b′)

t=1
(a′′b′′) (ab)

y ′0i
′
0 y ′′0i

′′
0 ỹĨ

](3)
q

= [a′′]!([a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]![b′′]!)1/2

D( q,t=1
a′′b′′ )[a

′b′; ab]0[abĨ z̃]∇[ 1
2b
′′, 1

2a
′, Ĩ ]

×
∑
j

(−1)(b
′′−a′′)/2−Ĩ+j qQ4(a

′b′a′′b′′ab)+j (j+1)+Ĩ (Ĩ+1)/2

∇2[ 1
2a
′′, 1

2a
′, j ]∇2[ 1

2(a
′ + a′′ − a)− v, 1

2a, j ]

× [2j + 1]∇2[ 1
2(a
′′ + b′′), Ĩ , j ]

[b − v + 1
2(a
′ + a′′)− j + 1]![b − v + 1

2(a
′ + a′′)+ j + 2]!

(5.7)

where

Q4(a
′b′a′′b′′ab) = (b′ − v + 1)(b′ + b′′ − b + v)− 1

8(a
′ + b′′) (a′ + b′′ + 2

)
− 1

2{a′′(a + b′ − a′′ + v)− b′′(b′′ − b + v)}
− 1

4(a + b − b′ − b′′ − v)(a + b − b′ − b′′ − v + 2) (5.8)

∇[abc] is defined as (3.3),0[abiz] is defined as (4.9). The square of denominator function
(Ali šauskas [10]) may be expressed in different regions using the different symmetry
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relations and expressions

D2

(
q, t = 1

a′′b′′

)
[a′b′; ab] = D2

(
q−1, t = 1

b′′a′′

)
[b′a′; ba] (5.9a)

= qb′′(a′−b′′+b−v+2)−a′′(b′−a′′+a+v+2)D2

(
q−1, t = 1

a′′b′′

)
[ba; b′a′] (5.9b)

=
∑
n1,n2

(−1)n1+n2qa
′′n1−b′′n2[a + b + n1+ n2+ 2]!

[n1]![ n2]![ a + n1+ 1]![b + n2+ 1]![a + b + n1+ 2]!

× [a − a′′ + v + n1]![ b′ − a′′ + a + v + n1+ 1]!

[a′ + a′′ − a − v − n1]![ a + b + n2+ 2]!

× [b − b′′ − v + n2]![ a′ − b′′ + b − v + n2+ 1]!

[b′ + b′′ − b + v − n2]![ a + b − a′′ − b′′ + n1+ n2+ 1]!
(5.9c)

= (−1)b
′−b+vqa

′′(a′′−a−v−1)−b′′(b′′−b+v−1)+b′−b+v

× [a′′]![ b′′]![ a′ − b′′ + b − v + 1]![b′ − a′′ + a + v + 1]![b′ − a′′ + v]!

[b′ + b′′ + v + 1]![a′ + a′′ + b − v + 2]![b′ + b′′ + a + v + 2]!

×
∑
s,u

(−1)s+uqs(b
′′−b+v)−u(a′′+b−v+2)[a′′ + b′′ − s − u]![ s + u]!

[s]![ a − a′ + b′′ + v − s]![ b − b′ + a′′ − v − s]![ b′ − b + v + s]!

× [a′ − b′′ − v + s]!
[a′+ b′− a′′− b′′+ s+ 1]![u]![ a′+ a′′− a− v− u]![ b′+ b′′− b+ v− u]!

× [a′ + b′ + a′′ + b′′ − u+ 2]!

[b − b′ − v + u]![ a′ + a′′ − v − u+ 1]!
(5.9d)

which presents a rearrangement problem that is of present separate interest for investigation
of the multiple basic hypergeometric series (cf Milne [47]).

Using the same equations (3.1) (as a double sum, with fixed the same summation
parametersj ′ = 1

2b
′ andm′ = b − 1

2b
′ − b′′ − v + n2) and (3.8) of [10] and theq-version

of Minton’s summation formula∑
x

(−1)xqx(a+b−c)[c − x]!

[x]![ a − x]![ b − x]![ S + 1− x]
= (−1)a+b−cq(a+b−c)(S+1) [S − a]![ S − b]!

[S − c]![ S + 1]!
(5.10)

(cf (1.9.6) of [29]) we may derive the boundary canonical isofactors, related to the overlap
(ηim−i ′′m,↑,↑|η+,Ĩ ′′,+)q :[
(a′b′)

t=1
(a′′b′′) (ab)

y ′0i
′
0 Ỹ ′′ ĩ ′′ y0i0

](3)
q

= ([a + 1]![a + b + 2]![a′]![ a′ + b′ + 1]![ ĩ ′′ − Z̃′′]!)1/2
([ ĩ ′′+Z̃′′]!)1/2D( q,t=1

a′′b′′ )[a
′b′; ab]∇[ 1

2b,
1
2b
′, ĩ ′′]R[a′′b′′ ĩ ′′Z̃′′][a′+ a′′− v+ 1]!

×
∑
s

(−1)sqQ5−s(a′+a′′−v+1)[ ĩ ′′ + Z̃′′ + s]![ b′ + v − s]!
[s]![ ĩ ′′ − Z̃′′ − s]![−v + s]![ a′ + a′′ + b − v − s + 2]!

(5.11)

whereZ̃′′ = 1
2(b − b′)− v,

R[abiz] =
(

[a + z − i]![ a + z + i + 1]![b − z − i]![ b − z + i + 1]!

[2i + 1][a]![ b]![ a + b + 1]!

)1/2

(5.12)

Q5 = (a′ + a′′ + a − v)2+ 1
2{(b′ + b′′ − b + v)(a + b − 2b′′ − 2v)+ av

+ĩ ′′(ĩ ′′ + 1)} − 1
8(b − b′)(b − b′ + 2). (5.13)
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We may rearrange the3φ2(q) type sum in (5.11) to a more symmetric form by analogy
with the different expressions for the Clebsch–Gordan coefficients of uq(3) (cf Nomura [48],
Ruegg [45]) and apply the symmetry relation of the uq(3) canonical isofactors (see (4.2a)
of [10]). This way we can derive an expression for extreme isofactors[
(a′b′)

t=1
(a′′b′′) (ab)

y ′0i
′
0 ỹ ′′Ĩ ′′ y0i0

](3)
q

= (−1)v([b + 1]![a + b + 2]![b′]![ a′ + b′ + 1]![ Ĩ ′′ − z̃′′]![ Ĩ ′′ + z̃′′]!)1/2
D( q,t=1

a′′b′′ )[a
′b′; ab]R[a′′b′′Ĩ ′′z̃′′][b′ + b′′ + v + 1]![b + a′′ − v + 1]!

×1[ 1
2a
′, Ĩ ′′, 1

2a]
∑
s

qQ
′
5+s((a′+a′′)/2+Ĩ ′′+1)

[s]![ Ĩ ′′ + z̃′′ − s]![ Ĩ ′′ + 1
2(a
′ − a)− s]!

× [b + a′′ − v + 1+ s]!
[a − a′ + v + s]![ 1

2(a
′ + a)− Ĩ ′′ + a′′ + b − v + s + 2]!

(5.14)

(cf the expression with the triple sum derived by Asherovaet al [49]). Here z̃′′ =
1
2(a
′ − a)− v,

1[a, b, c] =
(

[a + b − c]![ a − b + c]![−a + b + c]!
[a + b + c + 1]!

)1/2

(5.15)

Q′5 = −(b′ + b′′ − b + v)2− 1
2{(a′ + a′′ + a − v)(a + b − 2a′′ + 2v)+ bv − Ĩ ′′(Ĩ ′′ + 1)}

+ 1
8(a − a′)(a − a′ + 2)− (Ĩ ′′ + z̃′′)(Ĩ ′′ − z̃′′ − a − b + v − 1). (5.16)

Now let us turn to the boundary canonical isofactors with an arbitrary value oft . We
may use the recursive construction (cf Draayer and Akiyama [27], Ališauskas [10, 28]) of
the independent twisted (Cornwell [50]) tensor operators

T̃
(a′′b′′)t=k+1,q
y ′′i ′′i ′′z

= [T (kk)t,qT (a
′′−k,b′′−k)1,q ](a

′′b′′)q
y ′′i ′′i ′′z

(5.17)

derived by means of the stretched coupling of the self-adjoint canonical tensor operator
T
(kk)t,q

y2j2m2
of the minimal null space (with trivial shift of uq(3) irreps and restricted shift of

uq(2) irreps for maximalj2 = k = t − 1) and the tensor operatorT (a
′′−k,b′′−k)1,q

y1j1m1
with the

maximal null space, ensuring the null space inclusion property of the uq(3) canonical tensor
operators (the vanishing of all their matrix elements fort 6M−r, whereM is determined
by (4.7)), after eliminating the superfluous tensor operators that appeared in (5.17) by means
of the orthogonalization process begun from the maximal value oft .

Hence, by analogy with (2.13) and (5.1) of [28] the recoupling technique and our
equations (5.7) and (4.13) allows us to derive the expansion coefficients of tensor operators
T̃
(a′′b′′)t=k+1,q
y ′′i ′′i ′′z

as overlaps

(
T̃ k|η−,+,Ĩ

)
q
≡
∑
t>k+1

U3

{
(a′b′)

1
(a′′ − k, b′′ − k) (ab)

k+1
(kk) (ab)

t

(a′′b′′)

}
q

[
(a′b′)

t

(a′′b′′) (ab)

y ′0i
′
0 y ′′0i

′′
0 ỹĨ

](3)
q

= ([a + 1][b + 1][a + b + 2][b′]![ a′ + b′ + 1]![k]!)1/2

× [a′′ − k]![ b′′ − k]!0[abĨ z̃]∇[i
′′
0i
′
0Ĩ ]

D( q,t=1
a′′−k,b′′−k )[a

′b′; ab]D( q,t=k+1
kk

)[ab; ab] ([b′′]!)1/2

×
∑
j,j ′

(−1)(b
′′−a′′−k)/2−Ĩ+j qQ6+j (j+1)−j ′(j ′+1)+3Ĩ (Ĩ+1)/2

∇2[ 1
2(a
′′ − k), 1

2a
′, j ]∇2[ 1

2(a
′ + a′′ − a − k)− v, 1

2a, j ]
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× [2j + 1][2j ′ + 1]

[b − v + 1
2(a
′ + a′′ − k)− j + 1]![b − v + 1

2(a
′ + a′′ − k)+ j + 2]!

× ∇2[ 1
2(a
′′ + b′′)− k, j ′, j ]

∇2[ 1
2(b
′′ − k), 1

2a
′, j ′]∇2[ 1

2k, j
′, Ĩ ]02[abj ′z̃− 1

2k]
(5.18)

where

Q6 = Q4(a
′, b′, a′′ − k, b′′ − k, a, b)− 1

8k
2+ 3

4k + 1
2kz̃. (5.19)

The second sum (overj ′) now corresponds to the ‘braided’q-factorial series, resembling
the very well-poised11φ10 basic hypergeometric series. A similar series also appears in the
rather complicated expansion of overlaps(T̃ k|T̃ k′)q .

6. Concluding remarks

In this paper the roles of separate terminating classical and basic hypergeometric series and
other q-factorial series in the boundary isoscalar factors and elementary overlaps of the
coupling coefficients of SU(3) and uq(3) are demonstrated. The elementary overlap and
its inverse in terms of the balanced basic5φ4 or classical5F4(1) hypergeometric series are
derived (in section 3) for the first time for isofactors of both—uq(3) and SU(3), as well
as the expansion of the extreme matrix elements of the (non-self-adjoint) canonical tensor
operators with the minimal null space (in section 4). Otherwise the extension of some results
[26, 28] from SU(3) to uq(3) and, especially, theq-phases, in sections 4 and 5 are rather
non-trivial. The derivation of the corresponding equations (including their SU(3) versions) is
considerably simplified, using special summation theorems of the very well-poised4φ3 and
6φ5 [29], in addition to the summation theorem of2φ1 (cf [39]). For a definite problem the
Minton-type summation theorem [29] was usable, as well as the Karlsson-type summation
theorem [29] which appeared when rearranging the multiplicity-free isofactors of uq(n) (see
(3.15) of [8]). When theq-phases of overlaps (expressed in terms of the balanced and
very well-poised basic hypergeometric series and leading to the paracanonical isofactors)
do not depend on the summation parameters, the new class ofq-factorial series, resembling
the very well-poised basic hypergeometric series2r+1φ2r (but with the ‘braiding’q-phase
factor), appeared in the overlaps, associated with the canonical tensor operators. The used
rearrangement and summation equations of these twistedq-factorial series, may probably be
associated with some limit transitions for the very well-poised basic hypergeometric series
2r+2φ2r+1, by analogy with the limit transition between the Racah and Clebsch–Gordan
coefficients of SU(2) or uq(2) and the Whipple [35] and Watson [36] transformation.
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[28] Ali šauskas S 1992J. Math. Phys.33 1983
[29] Gasper G and Rahman M 1990Basic Hypergeometric Series (Encyclopedia of Mathematics and Its

Applications 35)ed G C Rota, (Cambridge: Cambridge University Press)
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